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ABSTRACT

The stability theory for finite difference Initial Boundary-Value approximations to sys-
tems of hyperbolic partial differential equations states that the exclusion 8ieigenvalues !.nd
generalized eigenvalues is a sufficient condition for stability. The theory, ho e er, does not
discuss the nature of numerical apprvimations in the presence of such eigenval es.

In fact, as was shown previously4M, for the problem of vortex shedding by a 2- cylinder
in subsonic flow, stating boundary conditions in terms of the primitive (non-characteristic)
variables may lead to such eigenvalues, causing perturbations that decay slowly in space and
remain periodic time. Characteristic formulation of the boundary conditions avoided this
problem.

In this paper, we report on a more systematic study of the behavior of the (linearized)$
one-dimensional gas dynamic equations under various sets of oscillation-inducing f'legal \
boundary conditions.
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1. Introduction

The increase in computers' speed and memory allows researchers to investigate fluid
dynamical problems with greater attention to delicate features of the flows. For example,
only in the last five years have investigators [1,6] computed the vortex shedding phenomenon
behind a two-dimensional cylinder at low Mach numbers and moderate Reynolds numbers.
Unfortunately, with this improved ability due to increased computer power to compute
complex phenomena comes the necessity to deal with unforeseen numerical surprises which
might be mistaken for real or physical effects. For example, in the case of the 2-D cylindrical
Von-Karman vortex street computation - the main features of the flow, such as the shedding
frequency are predicted accurately. However, a concomitant computational result appearing
in the output data base is a spurious secondary frequency which was mistakingly attributed
to the start of transition. In previous work, [1], we have shown that the spurious secondary
frequency resulted from applying the far-field inflow boundary condition to the primitive
variables. It was also shown there that the same boundary treatment, applied, however,
to the characteristic variables, eliminated this phenomenon. In this paper, we characterize,
by an analytic description, the boundary conditions (both inflow and outflow) under which
the numerical solution of the Euler equations will exhibit temporal oscillations which are
foreign to the exact solution of the p.d.e.'s. The starting point of our study is the modal
analysis developed by G-K-S [2], and Osher [3]. This theory states that for finite differences
approximations to Initial Boundary Value problems of hyperbolic systems stability is assured
by the exclusion of eigenvalues and generalized eigenvalues. The theory, however, does not
discuss the nature of the numerical approximations in the presence of such eigenvalues.

The model that we study is that of the 1-D compressible Euler equations linearized about
free stream conditions. The numerical schemes that we analyze are second order in space
and time represented by the Lax-Wendroff scheme. In our 1-D case it is equivalent to all
other second order algorithms such as the MacCormack scheme [4].

In Section 2, we briefly review the underlying theoretical considerations both for the
p.d.e. and the f.d.e. formulation.

In Section 3, we discuss the case of inflow b.c.'s expressed with primitive variables. We
show that even though the numerical solution is technically stable and therefore, by the Lax
equivalence theorem, convergent, for finite meshes and time it shows spurious oscillations
that decay only slowly with mesh refinement. In Section 4, we repeat this demonstration
for the case of primitive-variable description of the out-flow boundary conditions. In Section
5, we apply a primitive-variable formulation of the boundary conditions both at the inflow
and outflow boundaries. This allows a nonlinear interaction between the modes created at
both boundaries. At this point, the reader should be reminded that the same treatment
of the boundary conditions, applied to the characteristic variables eliminates any spurious
frequencies. This is a corollary of our analytical formulation and is borne out in our numerical
experiments.

All sections contain numerical examples pertinent to the initial boundary value problem
considered therein.
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2. Analytical Preliminaries

We start with the one-dimensional Euler equations of gas dynamics in conservation form:

au aF(U)_5T+ - a. -° (2.1)

where

U ,(2.2)

Fm= + p  (2.3)
u(E + p)

Here u, p, p and E are, respectively, the velocity, density, pressure, and total energy per unit
volume. m = pu is the mass flux. In the case of an ideal gas the equation of state is

[1M2)]
P =(- -I) - - -(2.4)12 p

where -y = 7/5 for diatomic gases such as air. Equation (2.1) can be rewritten in non-
conservation form as

au au
-5-T + A(U)-X = 0 (2.5)

where A = OF/8U is the Jacobian of the flux vector F with respect to the solution vector
U. Linearizing about steady free stream conditions., UT = (poo, poouoo, Eoo), Equation (2.5)
becomes: -(U) + A(U.)-(6u) = 0, (2.6)

where 6U = U - Uo, is the perturbation vector. The matrix A(Uo) = [aF(U)] has

three eigenvalues, a, = uoo - coo, a2 = uoo + c,,o and a3 = uOO. The free stream sound
speed, coo, is given by coo = (-,pOO/p,)k. The corresponding eigenvectors in terms of the
conserved-variable perturbations are given by

R, -(Sm - uoo5p) + 2 1 [ p-uO0 6m+ 6E], (2.7)

R 2  (6M - uoo6p) + - 1 [ 6p -uoo~m+ 6E] (2.8)

and

= -oo6p uo-6 1 E] .(2.9)
coo

Furthermore, using a linearized version of the equation of state, i.e.,

[1 2 6 - o m +6E (2 106p = (-Y - 1) [2uo0 Sp-u 0 0 Sm+ S](2.10)
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equations (2.7) - (2.9) may also be written in terms of the primitive-variable perturbations,
(6p, 6, 6p):

R= -po6u + 1Sp, 
(2.11)coo

R2= P.6U + 1S, (2.12)
coo

and
'1

Coo

Any perturbation imposed on the free stream solution will evolve as a combination of these
eigenvectors.

In terms of the characteristic variables R.(s = 1, 2, 3) defined in (2.7 - 2.9) and/or (2.11
- 2.13), Equation (2.6) may be written as:

OR1  OR1O----i- + (u,,. _ c. _ = o(2.14)

OR2  OR2
+ (uO. + coo ) = 0 (2.15)

aR3 ua OR3--3 + - -x 0 (2.16)

or
OR, OR,at- -+a,--=o, S= 1,2,3. (2.17)

In a finite domain, say 0 < x < 1, for the subsonic case uo < coo, the system (2.7) is well
posed with the following initial and boundary conditions:

R,(x,0) = f.(x) s = 1,2,3 (2.18)

R2(0, t) - oR, (0, t) = g1(t) (2.19)

R3(0, t) - ~oR,(0, t) = g2(t) (2.20)

Ri(1, t) + aIR 2(1, t) + e1 R 3(1,t) = g3 (t) (221)

where ao,flo, a, and el are arbitrary real constants and f,(x), ga(t) (s = 1,2, 3) are square
integrable in their respective domains.

We get numerical approximations of second order spatial and temporal accur-'cy by using

the Lax-Wendroff scheme,

a.At.,, a,(at)2
'+' X 1 1 (A) 3 3 -1 -, j > s = 1,2,3 (2.22)• w I (A22A.x~

where w"', = w'(jAx, nAt) is the finite difference approximation Lo R.(x, t).
We note at this junction that although we shall illustrate thb, detailed development of the

spurious frequencies using the Lax-Wendroff scheme, they depend in fact mostly on the form
of the finite-difference boundary conditions (yet to be srecified) and not on the particular
inner algorithm.
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To close the system (2.22) we need both the finite difference form of the algebraic bound-
ary conditions (2.19 - 2.22) i.e.,

2,n, QO 1,n ol(nAt) (2.23)
3n - 1,n

w o  -lw o = g2(nAt) (2.24)

I~ rw2,n 3,n = (~)(.5iWN,-,,,, + eiwN" g3(,n/'t) (2.25)WN  N 1N 9

and also three "numerical" boundary conditions, one at x = 0 and two at x = 1 = AxN. A
commonly used method of imposing "numerical" boundary condition is to extrapolate from
the interior in the following manner:

In 2,n 3,n =I,n 2,n + O3,nw , + w= + +W = ,o, + owl+ e 1o , (2.26)

and ac the outflow boundary, x = 1 = NAx,

2,n 1,n 2,n 1,n (2.27)
N- QiWN N - lWN-1

3,- 3 I~iw = 3n1 -31 I%4$n1  (2.28)

The "numerical" boundary conditions (2.26) - (2.28) are zeroth order extrapolations, with
Q, #I, o0 and co arbitrary real constants.

For stability analysis studies it is sufficient to consider the case of homogeneous boundary
conditions, i.e., gr(nAt) = 0, r = 1, 2, 3. We look for solutions of the form

.n = z" (A, , + B, ,), s = 1,2,3. (2.29)

Substituting this ansatz into (2.22) we find that the K,'s and /s,'s are the roots of the
quadratic equation

(A,2 - A,)X,2 + 2(1 - z - A,2)x, + (A2 + A,) = 0 (2.30)

where A, = a5At/Ax. For IzI > 1 one of the roots of (2.30) (say x.8) is inside the unit circle
and the other, p,, is outside the unit circle.

Substituting (2.29) into the homogeneous version of (2.23) - (2.28) we get the following
system of equations:

A,
A 2
A 3

Q(B(z), 1(z)) A3 = 0 (2.31)

B 2

B 3
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where Q(.K(z), j4.(z)) 4 'Q(z) is given by

X, - 1 a0C2- 1) o( - 1)UO-1a(z2- 1) e(/A- 1

-ao 1 0 -ao 1 0

-'6o 0 1 -00 0 1

xN OKN CIN AN N 611N
K1  ~ 2  ~ 1 3  1 /2 1k3

N-1(. - 1) . N-1K2 - 0 -011L(N - ) 0-(A2 1) 0

-01 -1(K- 1) 0 K- -(K3 .) - 1 ,,N-I(Al- 1) 0 N(jg- 1)

(2.32)

Note that the dependency on z in (2.32) comes from the fact that Kj, jj (j = 1, 2, 3) are
functions of z defined implicitly in (2.30).

It is quite easy to formulate a necessary condition for stability. This is the Riabenkii-
Godunov condition [5]:

Lemma 2.1: The Lax- Wendroff scheme (2.22) with the inflow boundary conditions (2.23),
(2.24), and (2.26) and outflow conditions (2.25), (2.27), (2.28) is unstable if there is Izol > 1
such that

det Q(zo) - 0. (2.33)

In fact, such a zo gives a solution of the type

wj = z o (A. n° + B.f4)

that grows with the number of time steps. This is indeed a case of classical instability.
The sufficient condition for stability can also be formulated in terms of the determinant

of Q(z); in fact it has been proven:

Lemma (2.2): [GKS] The LW scheme (2.22) with the b.c.'s (2.23) - (2.28) is stable if for
every Izol > 1,

det Q(zo) 0 (2.34)

It is evident that the case Izol = 1 with det Q(zo) = 0 is covered by neither lemma. It is
precisely this case, however, that is responsible for the spurious oscillations.

For the sake of convenience, we rewrite (2.31) and (2.32) in the following way:



Define

A(r.) -an 1 0

-00 0 1

(2.35)

K N L1KN CKN

B.) -i.N-i~x £1/CNK 3
= i) 2 - 1)

_pIKN- 1 (Ki-1) 0 Nc'-1 )
(A 0 3 X

A2  bz(B 21
A 3  B 3

Now (2.31) becomes
A(.) a+A(/)b= 0 (2.36a)

B(n) +B(j) b= 0 (2.36b)

and
( A(K) A(A)) (2.37)Q~z) =B(,.) B(A)

The determinant condition (2.33) involves the solution of a very complicated nonlinear com-
plex equation. Only little insight can be gained by trying to directly analyze it. One simple
case, though, is given by the fully characteristic case

o---10=0 = 60o= al =,81 = =C =0. (2.38)

Note that in this case A and B are diagonal

KJ 1 0\ [K 1N0

A(K) 0 1 0 B(N) 0 K2 (K2- 1) 0 (2.39)
0 0 1 0 0 aN-1( --I

and the determinant condition reduces to
[(r.,_ 1)IL N_K (A_ -1)][(JL2_ 1)AN-1 _ K -1 (r-2 1)1[(/43_- 1 )4-1 N-1 (.0

N-i 2 ( 3 (r3-1)] = 0. (2.40)

Equation (2.40) indicates that the choice of parameters in (2.38) decouples the system (2.31)
and the system is thus reduced to the scalar case. It may be easily shown, using (2.30), that
there is no Zo for which (2.40) has a solution, and therefore no spurious solutions exist in
the fully characteristic case.
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3. The Inflow Case

In this section, we will investigate the possibility of having a spurious frequency induced
by "primitive" boundary conditions (numerical and analytical) at the inflow boundary. By
"primitive" boundary conditions, we mean b.c.'s expressed in terms of primitive variables.
By a spurious frequency, we mean a solution of the type z0 = e'4 to the determinant condition
(2.33). Indeed, if the determinant has such a root z0 , then a spurious solution of the form

n = Z +(A5 Ki + B.jd) = e'6(A.i. + BILI) (3.1)

is superimposed on any numerical solution of (2.22) - (2.28).
When the number of grid point increases without limit, N -* , the influence of the

outflow boundary treatment gets decoupled from that of the inflow boundary. This can be
seen by observing that the submatrix B(n) defined in (2.35) vanishes because ijr < 1. At

the same time B(li) tends to infinity. Therefore, from (2.36b) we have that b -+ 0. We have
then, from (2.36a)

A() a=O0 (3.2)

and the determinant condition (2.32) reduces by (2.37) to

det Q(z) = (r.1 - 1) + uoao(K2 - 1) + 6000(r -1) 0. (3.3)

In practice, one cannot achieve N --* oo. We then inquire how to best decouple the
outflow influence from the inflow for the case of fixed N, albeit large. If we set the amplitude

of the perturbations due to outflow treatment, I b 1, equal to zero then from (2.36) we have

(A(n) + B(K)) a= 0 (2.36c)

as well as A(K) = 0. Thus the term B(K) in (2.36c) represents the effect of the incomplete
decoupling due to the finite N. Since N > 1, it is clear from the definitions that B(-)
represents a small perturbation to A(K), which we would like to minimize. It can be shown
that this minimization is achieved for el = a, = a, = )31 = 0. Notice that this corresponds
to imposing both analytic and numerical outflow boundary conditions on the characteristic
variables, Ra(s = 1, 2, 3).

A spurious solution exists if the determinant condition (3.3) has a root of the form
z0 = e' O. In this case, the homogeneous version of (2.21) - (2.28) with al = al =i,31 = 0
admits a solution of the form

w ,, i j 5 0 (3.4)

< 1. (3.5)

Several observations can be made at this stage:

(i) No spurious frequency is created if either the analytical inflow boundary conditions
(2.23) - (2.24) or the numerical one (2.25) are in characteristic form.

If the analytical boundary conditions are in characteristic form, then a0 = 0 = 0 and
the system case is reduced to the scalar case. If the numerical inflow condition (2.26)
is in characteristic form, then co = eo = 0 and the system again reduces to the scalar
case.
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(ii) On the other hand, if the inflow boundary conditions are not given in terms of char-
acteristic variables, then there is a wealth of possible boundary treatments that lead
each to different spurious solutions. In fact, for every frequency there exists a set of
inflow boundary conditions that induces a spurious solution with that frequency. In
particular, given an arbitrary zo = e'0; 0 $ 0 we get ic,(zo) from (2.30). We can then
view (3.3) as an equation for a.oo and Poeo. Since these quantities are real, whereas
the r.,(zo) are complex, Equation (3.3) is a system of two equations for cioo and '03 co,
yielding a unique solution. The explicit form of the spurious solution (3.4) reveals the
nature of such a solution. We summarize the results in the results in the following
lemma:

Lemma (3.1): The spurious solution (3.4) converges to zero for every fixed x = jAx and
t = nAt as Ax ---+ 0, At -* 0.

Proof: Since Ax -- 0 and x is fixed, then j -- oo. Note that K1r., < 1, and therefore
limio K = 0.

Notice that even though Lemma (3.1) indicates convergence of the total scheme, still on
a fixed finite grid, the spurious solution

Wsn= A5 e 17K

may be confused with a real time periodic solution. In particular, if one of the r,(eO) is
close to unity in magnitude, then the time periodic solution may show up in a large part
of the spatial domain. Of course, if all the x's are small in magnitude, the time periodic
spurious solution will be confined to a very narrow boundary layer at the inflow boundary.

To illustrate the above analysis, we chose to solve numerically equations (2.14) - (2.16)
with U0 = 1 and M , = .4. Thus, a, = -1.5;a 2 = 3.5; a3 = 1;ca = 2.5. For the initial
conditions (2.18), we chose

R,(x,0) = e - R 2 (x,0) = e' R 3(X,0) = e (3.7)

For the analytical boundary conditions (2.19) - (2.21), we chose

ao = .582155; go = -. 6115; ol = 0; el = 0 (3.8)

and
g1(t) = e- 2t - aoea1t

g2(t) = e-2 3t - fpoealt (3.9)
g3(t) = eG t.

It is readily verified that under the above conditions the exact solution for the system is

Ri(x,t) = e -(z -at)

R 2(X, t) = exG2t (3.10)
R3(x, t) = e2(x-a't).
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Thus the analytic solution decays to zero at steady state. The system was discretized by
the Lax-Wendroff scheme (2.22) with the following parameters for the numerical boundary
conditions (2.26) - (2.27) - (2.28)

al = Pi = 0 (3.11)
a0 = 1 co---2.

Note that at the outflow boundary, x = 1, both the analytic and the numerical boundary
conditions are in characteristic form, because in this section we are interested in the influence
of inflow b.c.'s only.

It can be shown that the inflow determinant condition (3.3) has for the above choice of
parameters a solution of the form

z0 ='e'  (3.12)

The corresponding n,(zo) obtained by the quadratic equation (2.30) satisfy

,1 1 = .23035 [K21 = .95334 K3 1 = .19015 (3.13)

In the following graphs, we present w7'" for several meshes

1 1 1 1 (3.14)

Ax 16'32'64'128

At was taken to be 0.lAx, corresponding to a CFL of 0.35 for our flow parameters. The
results are sampled at x = .5, 0 < t < 9; thus

jAx=.5 and 0<nAt <9. (3.15)

At t= 9 the analytic solutions R, (2,9)(s = 1,2,3) are of the order of 10-6.
The numerical solution w '" versus time is presented for x = .5 and several meshes in

3

figures: 1(a,b,c,d) for N = 16, 32, 64,128. We do not present w 'n and w 1,n because they

converge even on coarse meshes (N > 16) to the exact solution. This convergent behavior at
x = .5 is due to the fact that I i! and I. 31 are small and hence I r.n/2 and r-3 1N/2 are already2,n

of the same order (- 10- 6) as the analytic solution. On the other hand, WN/2 displays a
time periodic solution on each of the meshes presented. However, as expected, as the mesh
is refined the spurious period is halved and the amplitude decreases. The solution converges
with the decreasing mesh, but for every one of the fixed meshes used the solution at x = .5
still exhibits the spurious frequency, because IK2 N/2 is not yet small enough. This behavior
at x = .5 is representative of the solution at other spatial locations.

4. The Outflow Case

In this section, we deal with the effects of non-characteristic formulation of the outflow
boundary conditions in a similar manner to that of Section 3.

It is easier to do the asymptotic (N -- oo) analysis in thl outflow case by using new
coefficients C's. Defining

C2 (4.1)

C



we may rewrite (2.36) as follow-

A() + D(y)i= 0 (4.2)

B(K)f + E(p),= 0 (4.3)

where
D(p)--- A(A)A(y) (4.4)

E(y) = B(/ )A(y) (4.5)

with
-N + i 0  0

A (p) = 0 ,u2'N+ i 0 (4.6)
0 0 A3-N+1

and the matrice A and B are defined in (2.35).
Again, for N large, D(IL) and E(y) have small entries. In order to decouple the influence

of the inflow conditions, we shall assume a= 0 and so the determinant conditiun becomes

det E(IL) = 0 (4.7)

or, more explicitly

det E(z) = Pl(Y2 - 1)(43 - 1) + a 1ogl 2(P1 - 1)(A 3 - 1) + CAl(ttl - 1)(I2 - 1) = 0. (4.8)

A technical argument similar to the one leading to (3.4), (3.5) gives a solution of the forrr.
S 'n = C,e i nw -j,

jl.((i'o)j > 1 (4.8)

The observation made there are also valid here, namely that a spurious solution (as defined
there) may exist for non-characteristic outflow treatment; see observations (1) and (2) on
pages 7-8. The numerical examples are again based on (2.14) - (2.16) with the same flow
parameters, and with the same initial conditions given by (3.7). For the analytic boundary
conditions, we took a0 = fl0 = 0, a, = 1,El = 2, and, from (2.23) - (2.25),

91 = e-a2t
92 = e -2at
93 = e alt +4 1r- e - a~t +4 EIe - 2as t.

The analytic solution is again

Ri(x, t) = e(---t), R 2 (, , t) ex R 3 (X t) = e - . (4.9)

The numerical boundary conditions (2.26) - (2.28) imposed on (2.22) were:

a1 = -4.668, fi = 2.09485, C0 = c0' = 0. (4.10)

These values of a, and i31 were chosen so that we will have a case of a spurious freauency
accompaaied by at least one tz near to 1. The resulting It's and z0 are:

/pi = 1.00625, Ibs2 = 2.0774, I#3j = 1.3959, Zo :- eoa '. (4.11)

10



The numerical results for w1' are presented (again at x = .5) in Figures 2(a,b,c,d,e). w/ 22n
3,nL

and w N12 display a convergent behavior due to the smallness of JA -N+jjj=N 2 , (S = 2, 3). On
1,nthe other hand, WN/ 2 is oscillatory on all the meshes we used, although the amplitude decays

in accordance with the / -N/a-law.
We have thus demonstrated that spurious frequencies can be induced by improper (i.e.,

non-characteristic) treatment of boundary conditions, not only at the inflow boundary (see
Ref. 1 for the physical case of a flow past a cylinder) but also at the outflow boundary.

5. The Finite Domain Case

In this section, we report on numerical experiments in which both boundaries (x = 0 and
x = 1) are treated in non-characteristic fashion. We chose the same boundary conditions
reported on in the previous two sections, but now they are applied simultaneously. Recall
that when only the inflow was non-characteristic, the solution exhibited spurious oscillations
but the solution converged as Ax -+ 0, At -+ 0. The outflow case on its own exhibited the
same behavior. We mention also that the G-K-S theory [2], for the stable case (see Lemma
(2.2)), predicts that if the semi-infinite cases (i.e., pure inflow or pure outflow) are each
stable separately, then also the finite domain case will be stable and convergent with mesh,
though perturbation might grow in time. In the numerical experimentation reported herein,
it will be seen that in our special case (Izo0 = 1 for each of the semi-infinite problems) the
solutions seem to grow exponentially in time and to converge, but non-uniformly, with mesh
size.

The numerical approximation (2.22) (for .s - 1,2,3) was used to solve (2.14) - (2.16)
with the boundary conditions now given by:

a0 = 0.582155 /3 = -0.6115 a0 = 1 eo = 2 (5.1)

a, =-4.6168 /31 2.09485 al = e1 = 2 (5.2)

The boundary parameters (4.1) were taken from the "pure" inflow problem and those in
(4.2) from the "pure" outflow problem.

We ihow the temporal behavior of w' ' at x = .5 in Figures 3(a,b,c,d,e,f). Examination
of these figures shows that unlike the case of "pure" inflow and outflow, where there were
oscillations but they did not grow in time in the present "finite domain" boundary treatment
the oscillati~rns row temporally. W j" and wj' ' display the same behavior and are not shown
here. Another difference between the "pure" case and the present finite-domain case has
to do with behavior as Ax is being decreased. In the previous sections, we saw that the
amplitude of the oscillation decreased uniformly with the mesh size. In the present case,
there is an increase in amplitude as Ax is decreased from N = 16 to N = 128. Afterwards,
for N = 256 and 512 we see a decreased amplitude; and although the perturbing oscillations
are still large compare to 10- 6 (and growing temporally) there does seem to be a beginning
of convergence.

We should remark here that this type of behavior of the numerical approximation to the
solution can be very unsettling for practitioners using practical codes, since multidimensional
mesh sizes seem likely not to be in the asymptotic range in the near future.
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Figure Ia. w3nvs. t 9 (Inflow, N =16)

0-

13



Figure lb. w''vs. t <9 (Inflow, N =32)
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Figure 1c. w 2 Va. N12 (Inflow, N 64)
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Figure id. wN12 vs. t < 9 (Inflow, N =128)
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Figure 2a. wN/3 Vs. t < 9 (Outflow, N -16)
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Figure 2b. w'vs. t < 9 (Outflow, N 32)
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Figure 2c. w'-' vs. t < 9(OtlwN 64
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Figure 2d. N12 vs. t 9 (Outflow, N -128)
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Figure 3a. wNI2 vs. N12 (Finite Domain, N =16)
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Figure 3b. w'vs. N12 (Finite Domain, N =32)
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Figure 3c. w"vs. N12 (Finite Domain, N 64)
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Figure 3d. w"/ 2 vs. N12 (Finite Domain, N =128)
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Figure 3e. WN/ 2 vs. t < 9 (Finite Domain, N = 256)
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Figure 3f. wN/ vs. t < 9 (Finite Domain, N 512)
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